

Challenges in meeting MSA in pasturebased systems

Research Associate School of Animal and Veterinary Science

C/O Struan Research Centre

Struan South Australia

(MLA 2015 Australian beef eating quality audit)

⁽MLA 2015 Australian beef eating quality audit)

	DEPLETION	REPLETION	DEPLETION	REPLETION
Starvation	LOW	SLOW (3-6 TIMES THAN MONOGASTRICS)	LOW/NIL	LOW
Exercise	RAPID	<12 HOURS	RAPID	>12 HOURS
Stress	RAPID	<12 HOURS	RAPID	>12 HOURS

- FOO <2000kg DM/ha ★
- Pasture mineral imbalance ★
- "Tail-end" cattle *
- Transported >100km to processor*

Scoping research 2014-15

- 5800 pasture finished MSA-eligible cattle
- Pasture sample and estimate of FOO
- Pasture History
- Animal History
- Management History
- Blood and Liver sample at slaughter

Pasture composition

- Magnesium
 - Pasture level significantly related to mob incidence of DC
 - 0.18-0.32% DM range measured
 - 0.1% increase in Mg results in 6% decrease in mean mob DC %

ROLE OF MAGNESIUM

- Enzyme co-factor and activator of over 300 enzymes
 - Energy metabolism and protein synthesis
 - Neurotransmitter function
 - Cell growth
 - Reproduction
 - DNA synthesis

• Rumen epithelium is the primary site of absorption

SUPPLEMENTING MAGNESIUM

- Not stored, need continual dietary source
- Max tolerable 0.4-0.5% DM Mg²⁺
- 4g Mg/d per 1% increase in K⁺ (Schonewille *et al.* 2008)

• Efficiency of absorption:

Chelated Mg=MgO > MgCO₃ > MgSO₄

Delivery Options

- Bolus
- Loose lick
- Block Lick
- Water supplementation
- Pasture supplementation- Fertiliser or Spray

Animal Mineral status

- Copper
- 99% deficient

• Zinc

• 94% deficient

- No direct correlation with mob %DC
- Both significantly correlated with both MSA marble score and rib fat depth
- Higher energy status= greater fat deposition

What About Factors off-farm?

- Observational Cohort Study
- 2881 animals
 - 63 mobs, 163 wash groups
- Measurements
 - Unloading
 - Lairage behaviour (Day before and of slaughter)
 - Washing frequency and duration

	Pasture	Grain	Total
Number of animals	1,437	1,447	2,884
Number of animals	50%	50%	100%
Dark cutting incidence	24%	2%	13%
Total number of carcasses	342	31	373
classified dark cutters	92%	8%	100%
Carcassos with $pH > 5.7$	333	28	361
Carcasses with pri > 5.7	92%	8%	100%
Carcasses with meat colour >	342	31	373
3	92%	8%	100%

	F probability	Effect on %DC
# Lairage washes	<0.001	0.8
Wash duration	0.091	0
Falls during unloading	<0.001	6.8
Jumping during unloading	<0.001	4.6
Group movement (morning)	0.01	3.8

- Avoid 'carry over' stock
 - Quit early
 - Grow faster
- Minimise movement of stock within 2 weeks of slaughter
 - Definitely not within 1 week!
- Understand pasture composition AND animal status'
 - Mg, K+
 - Copper and Zinc
- Tailor supplementation based on the individual system
- Employ strategies to reduce reactivity to transport and lairage conditions
 - Regular handling
 - Yard weaning
 - Clean cattle minimise washing stress

Fodder beet grazing systems

Opportunities for the Southern Australian Beef Systems

Fodder Beet

- Beta vulgaris spp.
- Family includes spinach, chard, beetroot
- Mangelwurzel and sugar beet
- Large, tankard bulb (high energy)
- Spinach-type leaves (high protein)
- Long history as stockfeed
- NZ commenced work optimising grazing *in situ* approx. 10 years ago

The research project

• PIRSA Advanced Food Manufacturing grant

"Innovative management practices to achieve year round supply of premium pasture finished cattle in the Limestone Coast region"

- Collaborative project
- MLA Donor company support for year 2 (2016-17)

Trial Outline

- 7 sites in total over 2 years
 - 2015-2016- 26ha
 - 2016-2017-32ha
- Fodder beet vs. control (conventional pasture and/or other forage crops)
- Steer Entry weight 350-450kg
- Animal measurements
 - Growth Rate
 - Muscle glycogen concentration
 - MSA grading performance
- Crop measurements
 - Growth rate and Yield
 - Crop utilisation
 - Feed quality and mineral composition

ECONOMICS

2015-16

- Crops sown early-late October
- Pivot irrigation (though flood will work)
- Specific horticultural chemical
- Induction feeding commenced late Feb-early March

Cultivation	Seed + Seeding	Spray	Fertiliser	Irrigation	Total/ha	
\$61	\$659	\$1411	\$985	\$422	\$3538	

2015-16 Crop Performance

Crude Protein (%)

Metabolisable Energy (MJ/kg DM)

Neutral Detergent Fibre (%)

2015-16 Animal Performance

Trait	Beet	Control	SEM	F Pr.
Slaughter Date	18/08/2016	11/11/2016	21	<0.001
Ossification	129.1	146.1	2.05	<0.001
EMA	75.08	70.82	1.01	<0.001
Rump Fat	10.37	10.41	1.39	0.802
Rib Fat	5.897	6.883	0.404	<0.001
MSAMB	413.1	404.8	19.17	0.431
рН	5.58	5.62	0.007	<0.001
MSA INDEX	62.33	61.33	0.453	<0.001
\$/KG	6.36	5.76	0.099	<0.001
TOTAL VALUE	2013	1850	6.73	<0.001

	Kg Live weight/ha	Cost/ha	Cost/kg LW gain	\$/kg LW gain	Net income \$/ha	Gross Margin \$/ha
Beet	1468.2	4280.5	3.03	3.5	5138.7	858.2
Control	99.7	128.69	3.16	3.3	326.24	197.55

Transition to grazing

- High Water Soluble Carbohydrate content
- Transition feeding period paramount
 - "Makes-or-breaks" the system
 - Start at 1kg DM/hd/day
- Strip grazing to control intake
 - Good power source required
- Clostridial vaccinations up to date

Nutritional concerns

- Acidosis/SARA
- Polioencephalomalacia
 - High sugar, low roughage induced thiamine deficiency
 - Exacerbated by high Sulfur diets
- Trace mineral nutrition
 - Particularly requiring:
 - Magnesium (Due to high K levels)
 - Phosphorous (Low levels in beets)

Phosphorous

- 0.18-0.24% Dry matter
 - 8kg DM intake of beets= 19grams P/day
 - 20g P/kg liveweight gain required.
- Crucial for bone development, energy metabolism
- Deficiencies result in depressed feed intake, low growth rates and eventual ataxia.

Hot tips

- Sufficient Grazing face
 - 1.5m plus/hd
- Roughage allocation
 Level of restriction dependant on quality
- Consistency is the key
 - Make life boring for them

- High Yielding
- Facilitate faster turn-off
- Higher eating quality product
- Optimisation of feeding systems
 - Sheep applications
- Whole farm system economic benefits

michael.wilkes@adelaide.edu.au

0407712180

