Improving sheep welfare for increased production

SOUTH AUSTRALIAN RESEARCH & DEVELOPMENT INSTITUTE **PIRSA**

Emma Winslow 3 April 2017

SARDI

SOUTH AUSTRALIAN RESEARCH AND DEVELOPMENT INSTITUTE

SARDI - Struan sheep Research

Livestock innovation and welfare group:

- Sheep welfare and wellbeing
- Production and management
- Genetic evaluation of meat traits
- Emerging technologies

SARDI

Welfare research – challenges and opportunities

SARDI

- Optimising management through nutrition
- Identifying welfare challenges

– Lamb survival

- Technologies for measuring welfare:
 - Collecting information on individual sheep
 - Using data to make decisions
 - Weighing up priorities

Lamb birthweight

Ewe nutrition

- Macro-scale:
 - Measuring condition score
 - Assessing condition score changes
 - Pregnancy requirements
- Micro-scale:
 - Mineral balances
 - Supplements

Lifetime wool

Department of Agriculture and Food

Lifetimewool project - Merinos

pregnancy status 100 Proportion of ewe flock (%) 80 **Twin ewes** 60 40 Single ewes 20 Dry ewes 0 2 1 3 5 Ewe condition score at joining ww.lifetimewool.com.au

Ewe condition score at joining and

lifetimewool

Wool Innovation

metimewool

LTEM 4.7

LTEM 2.2

LTEM 4.5

Ewes in better condition at lambing have heavier lambs

lifetimewool

LTEM 4.6

Lamb birth weight and survival

Lifetimewool project – feed budgeting

500 FOO

1000 FOO

1500 FOO

2000 FOO

Lifetimewool project – feed budgeting

TABLE 1a. Energy Required by Ewes @ Condition Score 3 to maintain weight								
Maintenance energy (MJ/d) for ewes under drought paddock conditions						Confinen	Confinement Fed	
Day of pregnancy	small fran maintair single	ne (45kg) n @ CS 3 twin	medium fra maintair single	ame (50kg) n @ CS 3 twin	large fran maintair single	ne (60kg) n @ CS 3 twin	medium maintain single	n frame n @ CS 3 twin
dry	7.4	7.4	8.0	8.0	9.3	9.3	6.7	6.7
50	7.6	7.8	8.4	8.6	9.7	9.9	7.0	7.2
70	8.0	8.4	8.7	9.1	10.1	10.7	7.4	7.9
100	9.0	10.2	9.9	11.1	11.5	> 12.9	8.6	9.8
130	11.3	14.1	12.3	15.4	14.4	17.7	10.9	14.1
days	maintain @ CS 3		maintain @ CS 3		maintain @ CS 3		ewes and lambs	
lactating	single	twin	single	twin	single	twin		
10	17.3	21.7	18.7	23.4	21.5	26.9	ask for a	dvice on
30	18.7	23.9	20.2	25.8	23.2	29.6	confineme	nt feeding
50	15.5	19.1	16.7	20.6	19.2	23.7	ewes an	d lambs

Requirement = 11.1 MJ ME/day

1500

2000

TABLE 2a. Metabolisable Energy Intake (MJ/day) from dry paddock feed - perennial pastures Feed On Offer Digestibility 35% 40% 45% 50% 55% 60% kg DM/ha 500 0.3 0.7 1.3 1.7 2.2 2.8 1000 0.9 2.2 3.5 4.6 5.8 7.2

Perennial Pastures – Rules of thumb: When pasture dries off, digestibility is around 60%. Thereafter it declines by around 5% per month until it reaches a minimum of 35%.

4.8

5.6

6.3

7.2

7.8

8.8

9.3

10.2

SARDI

3.3

4.0

TABLE 2b. Metabolisable Energy (ME) intake from dry paddock feed - annual pastures						
Feed On Offer	Digestibility					
kg DM/ha	45%	50%	55%	60%	65%	
500	1.8	2.3	3.0	4.0	45	
1000	2.7	3.5	4.5	5.8	7.1	
1500	4.4	5.7	7.1	8.3	9.5	
2000	5.8	7.3	9.0	10.4	12.0	

Annual Pastures – Rules of thumb: When pastures dries off, digestibility is around 70%. It declines rapidly during the first 2 months to around 50% with slow decline thereafter.

Requirement = 11.1 MJ ME/day Energy intake from dry pasture = 2.3 MJ ME/day

1.4

1.8

= -8.8MJ ME/day to find from supplement

Australian Wool Innovation Limited

Frederic Des Matchelle Coude Destain Asid datama						
Feed type	Matter (%)	Metabolisable energy (MJ/kg of DM)	(% of DM)	Acid detergent fibre (% of DM)		
Grains						
Cereals and pulses						
Wheat	91	12.4-10.0(12.0)	7.5.15.0(11,5)	2.5-4.5(3.0)		
Barley	91	11.6-12.2(11.9)	7.0-13.0(11.0)	7.0-9.5(8.0)		
Triticale	90	12.0-13.0(12.5)	7.5-14.0(11.0)	3.5-5.0(4.0)		
Oats	92	10.4-11.3(10.7)	5.5-13.5(9.0)	16.0-21.5(18.5)		
Narrow leaf lupins	92	13.1-14.1(13.7)	27.0-42.0(34.0)	17.5-23.0(20.0)		
Albus lupins	92	13.4-15.0(14.0)	34.0-44.0(38.0)	17.0-21.0(19.0)		
Peas	91	12.5-13.5(13.0)	21.5-30.0(25.5)	6.0-10.5(9.0)		
Vetch	91	12.4-13.2(12.8)	26.0-34.5(29.0)	7.5-9.5(8.5)		
Chick Peas	91	12.0-13.0(12.4)	18.0-24.0(21.0)	12.0-16.0(14.0)		
Faba beans	90	12.4-13.2(12.9)	22.0-30.0(26.0)	7.5-9.5(8.5)		
Canola (>35% oil)	95	15.0-17.0(16.0)	20.0-25.0(22.0)	22.5-26.5(24.0)		
Cereal seconds						
Wheat	92	11.8-12.4(12.1)	12.5-17.0(13.5)	3.5-5.5(4.5)		
Barley	93	11.1-11.8(11.4)	11.0-14.5(12.5)	9.5-12.5(10.0)		
Triticale	92	11.3-12.1(11.7)	10.5-15.5(13.0)	4.5-6.5(5.5)		
Oats	93	9.8-10.5(10.3)	4.5-16.0(12.5)	21.0-26.0(23.5)		
Sheep pellets						
Maintenance	90	8.0-9.0(8.5)	8.5-9.5(9.0)	29.5-32.0(31.0)		
Production	91	10.6-11.4(11.0)	13.5-16.0(15.0)	20.0-25.0(23.0)		

Barley = 11.9MJ ME/kg We need to find 8.8MJ ME/day 8.8 / 11.9 = 73.9

Feed 740g Barley/ day

SARDI

Lifetime maternals project Questions:

1.Optimal CS profile for lamb survival2. Are feed budgets the same?

Lifetime maternals – design 2014

	Struan	Hamilton	Balmoral	Mount Barker (WA)
Ewe base	BLxM, Mo	Composite	Composite	Composite
Sire type	Poll Dorset	Maternal rams	Maternal rams	Maternal rams

Preg scanned at Day 50 and split into 4 CS treatments

- CS 2.5
- CS 2.8
- CS 3.2
- CS 3.6

Lifetime maternals

Condition score of maternal ewes at lambing and weaning rates

	Btype	CS2.5	CS2.9	CS3.3	CS3.7	
	Single	80	- 00	90	82	
6	Twin	135	145	161	169	
	Overall	120	127	140	142	

Broadly speaking, non-Merino ewes react in a similar way to what Merinos do in terms of lamb survival.

Heavier ewes have heavier lambs – heavier lambs have higher survival.

SARDI

Lifetime maternals

SARDI

Merino and non-Merino survival curves are essentially the same.

Ewe nutrition

Maternal ewes achieved higher weights and condition scores under identical management.

Ewe nutrition

- Being able to accurately determine ewe nutritional requirements is key to optimizing the system
- Feed budgeting equations need to be reexamined for non-Merino breeds.

What is the relationship between pasture and supplements on ewe live-weight and condition score??

Lifetime maternals – next stages

- Pasture based assessment of feed requirements
- Determination of exact requirements for non-Merino ewes

- = more accurate feed budgeting for:
- 1. Improved production
- 2. Improved welfare

Ewe nutrition

- Macro-scale:
 - Measuring condition score
 - Assessing condition score changes
 - Pregnancy requirements
- Micro-scale:
 - Mineral balances
 - Supplements

Mineral balances in ewes

Mineral imbalances can cause metabolic diseases in late pregnancy:

- Hypocalcaemia (common leading up to lambing/ early lactation)
- Hypomagnesaemia (common soon after lambing)
- Pregnancy toxaemia (leading up to lambing)

Clinical expression most often occurs in late pregnancy (0.5 – 2% ewes).

Older ewes more susceptible.

Twin bearing ewes more susceptible.

Hypocalcaemia:

Ewes grazing spring pastures or cereal crops (low in calcium) or those high in oxalates (goosefoot, soursob, buffalo) unable to maintain calcium homeostasis.

Ewes that have downregulated ability to mobilise calcium stored in bone.

Hypomagnesaemia:

Ewes grazing pastures with high <u>potassium</u> and nitrogen levels (excessive application of nitrogen and potassium based fertilisers; cereal crops/stubbles), winter grazing of lush grass based pastures.

Both respond quickly to injections of calcium/ magnesium.

Clinical expression of disease not providing the full picture.

Little is known on effects of subclinical disease (symptoms not yet showing).

Low calcium:

- Reduced blood flow to reproductive organs
- Impaired smooth muscle contractions
- Uterine inertia
- Prolonged birth
- Prolapse
- Compromised thermogenesis

Researched extensively in cattle

Australian Wool Innovation Limited Feasible that lamb losses to dystocia may be due to sub-clinical hypocalcaemia/ hypomagnesaemia resulting from prolonged parturition.

Soil and pasture analyses may be useful in predicting mineral imbalances in stock.

Soil with mineral ratios K:(Ca + Mg) above .07 - .08 may present an increased risk of hypomagnesaemia in cattle.

Herbage with mineral ratios K:(Ca + Mg) above 2.2 may present an increased risk of hypomagnesaemia in cattle.

Except where excessively high N binds available Mg.

This trial:

- Analysis of pasture -30 days from lambing
- Analysis of pasture and soil -7 days from lambing and at marking
- Analysis of ewe plasma mineral status -10 7 days from lambing, and at marking
- Analysis of urine pH (slight acidosis assists cows in mobilisation of stored calcium)
- Analysis of urine specific gravity
- Analysis of urine mineral composition

Welfare research – challenges and opportunities

SARDI

- Optimising management
- Identifying welfare challenges

– Lamb survival

- Technologies for measuring welfare:
 - Collecting information on individual sheep
 - Using data to make decisions
 - Weighing up priorities

Condition scoring is essential for the optimal management of both Merino and non-Merino ewes:

- \rightarrow Maximising lamb and ewe survival
- \rightarrow Increasing weaning weight
- \rightarrow Improved pasture utilisation and farm efficiency

It can be:

- time and labour intensive
- subjective

SHEEPCRG

- Capture images of freshly shorn sheep
- Correlate images to the actual condition score and weight
- Can be used in conjunction with risk analysis and production data to facilitate better management

SHEEPCRG

